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The quantum theory of elastic constants
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Department of Physics, University of Canterbury, Christchurch, New Zealand
Received 5 November 1990

Abstract, A recent rigorous and rotationally invariant treatment of the theory of a homo-
geneously deformed material is discussed. Tt is shown that it leads to different strain per-
turbation terms in the Hamiltonian from those arrived at in the standard treatment of Born
and Huang, These differences are discussed. It is shown aiso that the Hamiltonian of the
deformed system may be directly expressed in terms of the Lagrangian finite strain tensor,
with the result, for example, that the correct symmetries for the thermodynamic quantities
are apparent at all times, The advantages and simplicity of the finite strain treatment are
discussed. It is also shown that the Born-Huang treatment fzils a simple test of rotational
invariance and so cannot be correct. This accounts for the difference in the two treatments.
As an example, it is shown how the soft mode of  quartz, following the method of Axe and
Shirane, contributes a logarithmic divergence to the elastic constants in addition to the
(T - T.)~' divergence discussed by these authors, It is weaker than this latter divergence,
but it may be of interest further away from the transition.

1. Introduction

Recently, a study (McLellan 1984a, b, 1985a, b and 1988—referred to here as M&4a,
MB84b, etc, respectively) was made of the quantum theory of ahomogenecusly deformed
system. A rigorous treatment was given, an important aspect of which is the recognition
that the energy eigenfunctions of the deformed system satisfy boundary conditions
different to those satisfied by the eigenfunctions of the undeformed system. Thus,
without a particular transformation of coordinates, the usual perturbation methods
cannot apply since it is basic to such methods that the perturbed eigenfunctions can be
expressed as, usually orthogonal, transformations of the vnperturbed eigenfunctions
which are regarded as a complete set. This may oot be done if they satisfy different

boundary conditions.
Emphasis is also placed on the symmetry properties of the indices of the elastic

. constants and the rotational invariance properties of the potential energy function.
It was shown that, in this treatment, the correct symmetries are obtained from the
beginning.

In this paper we show that this treatment does not agree with the standard treatment
of Born and Huang (1954}, (here referred to as BH) even for the case of a harmonic
model. It similarly disagrees with other treatments, e.g. that of Barron and Klein (1974),
which are variations on the BH treatment. The reasons for this disagreement will be
discussed in section 8 where it will be shown that the BH description of a deformed
crystal is not rotationally invariant and that this accounts for the different results in the
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two treatments. This section, apart from some definitions given in table I, may be read
independently of other parts of this paper.

After a brief discussion of the present treatment, the differences between the for-
mulae for the elastic constants for the two theories will be discussed. 1t will be shown
that while the correct index symmetries of the constants are shown to hoid in the present
theory as asimple consequence of the rotational invariance condition on the Hamiltonian
of the system, such symmetries for the elastic constants on the BH theory would be
inconsistent with the well known invariance conditions applied to the lattice potential
coefficients (see e.g. Wallace 1972).

The differences in the various contributions to the elastic constants are significant
and consist of extra terms in the vertex functions of the diagram perturbation technique.
For example. in the discussion of the - quartz transition, a term in the elastic constants
was discussed by Axe and Shirane (1970) as showing the effect of the soft mode. This
term gave a (T — T,)~' singularity in the elastic constants. One of the two corrections to
this term as required in the present treatment would, on following the same mode of
analysis as that of these authors, add a logarithmically divergent contribution to this
term. Of course, at the transition, the stronger divergence would control effects there.
However, this diverging contribution may be of importance in precursor effects; they
may also be of importance if the coefficient in the most strongly divergent term became
zero for some materials or some conditions, In the light of the current interest in this
transition because of the recent elegant experimental and theoretical work leading to
the discovery of an incommensurate intermediate phase, it is important that the correct
treatment of thermodynamic quantities such as elastic constants and piezoelectric coef-
ficients be given. Quantities, such as these that are related to strain deformations will
require corrections.

The elastic constants referred to throughout this paper will be the isothermal con-
stants of finite strain theory, namely those defined by

Cabap = (8°/0M58Mag)o 1)

where the derivatives are evaluated at the zero-strain reference state, and f is the
Helmholtz free energy per unit reference volume (see e.g. M84a, table 1). In passing,
the use of infinitestimal strain theory has few advantages which are offset by the fact that
the Cauchy stress tensor cannot be expressed as a derivative of a free energy even in the
infinitesimal limit. One result is that, although they are equal to those of equation (1)
for a zero-stress state only, the elastic constants of infinitesimal theory are symmetric
only when evaluated at a state that is at hydrostatic pressure, not for non-hydrostatic
reference states (see e.g. M80, pp 150-7). See e.g. M84a, table 1, for relations between
the elastic constants calculated using u or 7.

In applying this treatment to a crystal system, we shall use the well known Ham-
iltonian formulation appropriate to the adiabatic approximation. However, this treat-
ment is completely general, and could be applied to the case of the full Hamiltonian of
nuclei and electrons. Nelson (1988) (see also Pleiner and Brand 1988) has recently
studied the crystal system as a non-adiabatic case, and he has arrived at the conclusion
that, due to the coupling of optical phonons to acoustic phonons, there may be a small
dynamic antisymmetric part of the stress tensor. This would have the consequence that
the elastic constants would have 45 independent elements in the most general anisotropic
case—instead of the usually accepted number of 21. It should be possible to formulate
this possibility using the treatment presented here.
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Table 1. Definitions of symbols.

Symbol Definition

N Number of particles (atoms or ions)

N, Number of cells in lattice

U Volume of a celi

f Helmholtz free energy per unit reference valume

x# Position vector of particle p, g = 1,.. .| N

x Shorthand for all position vectors x*

X Shorthand for all position vectors X* in deformed container

E, Unit 3 x 3 matrix

D Homogeneous deformation matrix = 8X/ax

I Determinant of D

u D — E; finite strain tensor

7 Lagrangian finite strain tensor, defined by dS” — ds? = 2 gdx,dx,
where d§2 = |dX|?, ds® = |dx|?

X Reference position vector

R s Particle displacement from reference position

Lattice notation

!
A x (K) reference position vector

f i
Xt x( ) + v ( )

K K
: L1
By ®.s ( (I )

K K3

L, Mass of particle of sub-lattice
A,-1 gi, —gqf = (—q)j, wave vector and branch
AL a‘, + a;,creation and annihilation operators
Q(1) AR (B/20)'?
B(A)y= —-B'(-4) a, —ak;
Alg) 1 when ¢ is a reciprocal lattice point. ¢ otherwise

&‘(KV»), e{K|¢I.f)

Normalised polarization vectors, see Maradudin ez af (1971), equation (2.1.51)

In the next section we shall discuss the present treatment in order to introduce the

corrections.
For convenience a list of definitions of symbols is given in table 1.

2. Theory

The present theory derives rigorously in quantum terms all the contributions to the
elastic constants, that is, the kinetic and the potential terms as well as the fluctuation
terms. In the original treatment, M84a, the system was considered deformed homo-
geneously by suitably deforming the container as is done in experimental work. The
container was described in terms of a containing potential, but here we shall somewhat
more briefly discuss this effect by saying that the container is deformed, thus giving rise
to different boundary conditions when different deformations are applied. Reference
to the above paper will show that this is satisfactory.
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The Schrodinger equation for the system in the reference zero-strain state may be
written as

Hxyy,(x) = E pa.(x) (2)

where x is shorthand for all the position vectors ¥, u = 1, . . ., N of the N particles of
the system.

The Schrédinger equation for the system when in the deformed container is of the
same form

HX)y,(X) = (E, + OE, )y (X) (3)

where, for convenience in this case, we use upper case X for the Cartesian position
vectors, which span the region enclosed by the deformed container.

The important difference between these two equations is not in their form, but in
the fact that the boundary conditions in the two cases are different. This means that we
cannot use the ordinary techniques of perturbation theory and regard equation (3) as a
perturbed form of equation (2), since itis basictosuch methods thatit can be assumed that
the perturbed eigenfunctions may be taken to be linear combinations of the unperturbed
eigenfunctions, and, in fact, when suitably normalized, that they can be taken as orthog-
onal transformations of them. This certainly cannot be the case when each set of
eigenfunctions satisfies different boundary conditions.

This difficulty can be readily overcome by using a non-orthogonal transformation at
first, as follows.

In equation (3). we make the mathematical transformation

X=Dx (4)

where D is the homogeneous deformation matrix produced by the deformation of
the container, that is the container shape is changed so that the system is deformed
homogeneously and each point x of the system in the reference state is deformed to the
point X such that equation (4) holds true where the matrix D has the same value
everywhere in the system.

When the mathematical transformation is performed, the Schrddinger equation of
the deformed state becomes

H(Dx)y,(Dx) = (E, + 6E,)y,(Dx). (5)

We now observe that the eigenfunctions, ¥, (Dx), regarded as explicit functions of
the vectors denoted by x, obey exactly the same boundary conditions as do the unper-
turbed eigenfunctions y,(x) (as we may now describe them). Thus when suitably nor-
malized, using the determinant J of the matrix D as the Jacobian in the integrals, the
eigenfunctions ¢ (x) may now be expressed as an orthogonal transformation of the
unperturbed eigenfunctions of the reference zero-strain state.

It is readily seen that H({Dx) is Hermitian and well behaved with respect to functions
which satisfy the boundary conditions of the reference zero-strain state, when regarded
as an operator function of the variable x.

Thus, for example, we may write equation (3) in a perturbed form as

[H(x) + w(x)]y(Dx) = (E, + 6E,)y.(Dx) (6)

where

w(x) = H(Dx) — H(x). (7
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Note that if D represents a rotation instead of a deformation this perturbation vanishes.

This perturbation may first be expanded as a series in either the finite strain tensor
u, or, as we shall show, as a series in the Lagrangian finite strain tensor i (see table 1,
for definitions). The coefficients of these series, which are functions of the x*, may then
be expanded as series in the displacements p* from the reference configuration 3, to
obtain either a double series in the elements of u and the o¥, or in those of % and the p*,

These expansions and then the kinetic contribution will be discussed in sections 4, 5
and 6, respectively.

However, first we shall show how to treat, in a simple way, the sum over states Z for
the deformed strain state, in a manner independent of the treatment of the Schrodinger
equation given in this section.

3. The sum over states

We shall briefly show from first principles how the correct thermodynamic approach
may be given without directly referring to the treatment of the Schrodinger equation
given in the previous section. For diagram and other techniques, we start with the sum
over states for the deformed state

Z = Trace(e P#) = X, (n'|e~ B0 |p") (3)

where |n'} is the ket notation for the eigenfunction v, (X); this eigenfunction is con-
sidered normalized to unity ip the space of the variables X.

H we compare this expression with that for the reference container state, we see that
we cannot compare them in the usual manner by taking the trace of an operator with
respect to the perturbed eigenfunctions as being equal to its trace with respect to the
unperturbed eigenfunctions. This is so since we cannot transform from one to the other
by an orthogonal transformation.

Therefore, we must perform the mathematical transformation X = Dx as in the
previous section to obtain the following expression for the sum over states Z for the
deformed state,

S [wir 0e-r0y.00 dx =7 3 [ yir @) sy, (D) dx ©)

where J is the determinant of D. If we normalize the functions ¥, (Dx) to unity with
respect to the variables x, we then see that the factor /¥ in this equation is absorbed. The
right hand side is now the trace of an operator with respect to a set of orthonormal
functions which may be transformed by an orthogonal transformation to the unperturbed
eigenfunctions of the reference container state, since they obey the same boundary
conditions. We may write the perturbed sum over states as

Z =2, {n|e PHOD |y (10)

where the basis functions are the unperturbed eigenfunctions. Thus conventional per-
turbation techniques may be applied.

It is of interest to see that, in the corresponding classical statistical mechanical
treatment of Z, a factor JV is obtained in a similar way. However, it is not absorbed into
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the integral as here. In fact, this factor leads to the familiar equation of state pV = NkT
in the limit of an ideal classical gas.

We may note that the treatment is very general—for example, it does not need a
reference configuration or lattice. It has been applied successfully, for example, see
Ma84a, to the case of a perfect quantum gas.

4. The expansion in terms of u

If we take D = E; + u, where E; is the unit 3 X 3 matrix, we can expand w(x) as a series
in the finite strain tensor u.
The potential part of the perturbation term is

a1 '
P(Ox) = O(x) = uopxh T+ oy o Manp BIAHE T
n
! 8"
— ljj B o .
+"'+n!{;1=_11 u“"ﬂ'xﬁ‘}axﬁg.(,Bx';"—*'"' (11)

where the partial derivatives are evaluated at the (arbitrary) configuration x#, u = 1,
.. .. N, where N is the number of particles. In this equation, for brevity, we use a
generalized summation convention for repeated particle indices uy, g, . . oo 40+ . ., 88
well as for the Cartesian components.

The perturbation term involving the potential energy terms only has been expanded
as in equation (11) in powers of the tensor u. For a crystal lattice, we have a reference
configuration C,. The coefficient of each term of the expansion of equation (11) may be
expanded in powers of the displacements, v*, of the particles from their reference
configuration positions, x*, to obtain a double series in powers of the strain tensor u and
of the particle displacements,

Since
ot =xH — g (12)
we obtain, on expanding each term of equation (11),
o 1 S 1 @ ( 3" ® )}
-_ = _— —_—{ ——— By — v,
0(00) = 0() = 3 % re)r 2 { G (@) o), ) (13)

where { }, signifies evaluation at the reference configuration, x*, and the bracket symbols
(), are defined by, for example,

big)a = e fhig, (14)

Again, we are using the generalized summation convention for all repeated particle
indices and those of Cartesian components.

In table 2 are listed some terms, first order and second order in the strain tensor, of
the perturbation. It may be noted that the corresponding coefficients of the contributions
according to BH, Cowley (1963) and Barron and Klein (1972) are the leading terms in
those of the second columns of these tables. As indicated in table 2, the first-order
coefficients listed will be shown, in section 3, to be the same as those for the first-order
expansion in powers of 5.
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Table 2. Some perturbation terms, first order in the strain tensors u or %, for the whole
crystal, using untransformed lattice potential coefficients; also some quadratic in the tensor
u. Strain lines have arrows, phonon lines do not. The summation convention is to be used
for all pairs of repeated indices of whatever type, &, 8, ¥, . . ., #, ¥ . . . In laitice notation,
each index of the type u. ¥ corresponds to a pair of indices of the type {ix}, the cell origin
and sublattice indices respectively.

Factors and vertices Perturbation functions
Eog OF g First order in strain
1 . .
af O (£5duy + 84, O )0y
2 1
. hTINY *
af e 3 (FHPERE + Bgy BT + Oy, D2 )0 0N
3
— 1 BRIV LS HUIT L s I
off — 3 (25 yrrars Br1 P orars Bra*T arirs
501t
+ 8y, Payyr, JUFION U3
Ug\p, Yagpy Second order in strain
4
a f 1, .
wrPs Deas 71 R PLE)
5 .
alﬂl _1- - |""2(‘i}!‘1"2" +8 0 &)"Hz 6 *y 'u > »
@2, = 2 ABIXEIPLISY + Oyp X Doy + By, k51 PRI VY
6

(1/212) (15 PRGNS + Oy o, TH3PLIET + Oyipa¥h PhES
@ 8 - + 8,5, XEPUEE + O, XRPLER + 8,5, 0008, Pl
o ool .

a2f; * 6?13261'2}’31@;%;'2)&;{”;%

In table 2, for brevity, we are using indices, such as u, » etc, instead of the usual
lattice notation

(o)

) Lo
et = a0 ) 13)
1 2 -

We define

the usual lattice potential coefficients, which are derivatives evaluated at the reference
configuration (see table 1)

es()
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With regard to index symmetries, we see that the coefficients of equation (13} are
symmetric with respect to interchanges of the type (&;8;) <> («;8;). With regard to
interchanges of the type a, « 8;, we see that the terms of this equation that are linear in
v do have this symmetry as a consequence of the rotational invariance of €. But for
terms quadratic and higher in uwe see, by comparison with equation (19), that in general
we do not have this type of symmetry. As an important exception, we see that, for a
zero-stress state only, the coefficient of item 4, table 2 does have this symmetry (cf item
4, table 3, which certainly does have this symmetry for any stress state).

In the next section we shall show how to express the perturbed Hamiltonian H(Dx)
explicitly in terms of the well known Lagrangian finite strain tensor n (seg e.g. M84a,
table 1).

5. The use of the Lagrangian finite strair tensor

It has been shown (see M88) that a rotationally invariant and parity conserving potential
energy function may be taken as a function ®($#*), where $** = x* + x” is a set of scalar
products {often, but not necessarily, all such possible products). If we regard ® as an
explicit function of these scalar products, it may readily be shown (see also M84da,
equation (4.9)) that we may write

H(Dx) = (1/2m,)[1/(E5 + 2m)]ap phph + ®(x* - (E3 + 29) - x*)  (16)

using the generalized summation convention. The perturbation of equation (7) may now
be expanded in powers of 1 and will contain kinetic and potential terms.

At present we shall consider only the potential energy terms arising from the expan-
sion of ®(S*" + 2n,gx4xf). The derivatives of ® with respect to the §* may be related
to the derivatives of ® with respect to the variables x*. The relationships for the
derivatives of order 1 to 3 are effectively listed in M88, equations (2.8-10).

Now, if we expand the above function we obtain

PDx) = D(x) = g TGOH + (22/20) ], Mg TP IR OI 2 4
an

where
DAV = (3" P/ISKIY) 3§HTa) (18)

are,importantly, scalar functions. Again we use the generalized summation convention,
We note that the index symmetries of the coefficients of the terms in equation (17) agree
with those required of the elastic constants.

Now using the relationships of M88 equations (2.8-10), but for an arbitrary con-
figuration x*, not, as in these equations, for the reference configuration x*, we readily
obtain

P(Dx) — D(x) = B @P/3xE) + (1/200 4,8, Maup, [X51 x42(87 D/ dx41 0242
~ gk, (0@ 3x8) + . .. (19}

using the generalized summation convention. Since % is zero if D represents a rotation,
rotational invariance is trivially evident when % is used as the strain variable.

If we compare this expansion with that of equation (11) in powers of the strain tensor
u, we see that the first-order coefficients are identical and the second-order coefficients
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Table 3. Some perturbation terms, second order in the strain tensor w5, for the whole erystal,
using untransformed lattice potential coefficients, Strain lines have arrows, phonon lines do
not. The summation convention is to be used for all pairs of repeated indices of whatever
type, @, B, ¥, .. s i, # . .. In lattice notation, each index of the type p, v corresponds to a
pair of indices of the type (/&), the cell origin and sublattice indices respectively,

Factors and vertices Perturbation functions
Wiy Measde Second order in strain
4

1 . . . L
a i :>. E(xﬁixﬁiq”é}‘&i = 81,0, D)
o ff
5
ai —1~(:E§1£§gci:#1»«" + 8, Il 15 fgmi:w

:: ® 2 i ajoly YB3 ey vBat B X ajay

@afhy iy T

= Goa KB OBY + s, P53

1 . L.

p 71 CHERORERNS + 8,5 SR LS +

5?152“‘7%:‘1)‘;‘:;5;%

+ 8y, R OLNAN + Oy I PL
Q'I,B] >:/ . * 51’11516?2152¢;=u

—— - oy . . - »

o + 6?’15261’:)‘31@0'30’5 - émz{xﬁu‘q’ﬂ?i?&’ + 672&@;5;%

+ 8yip, Phlz Doy 052

are not. In fact, the additional term in the second-order coefficient of equation (19) is
proportional to the Cauchy stress tensor at the reference zero-strain state. Thus, these
coefficients are related in the same way as the elastic constant tensor ¢ and the wave
propagation tensor A (=3%f/0udu, see M84a, table 1).

As we shall be discussing the second-order elastic constants only, the first- and
second-order terms are all that we require at present. We have noted that they have the
required symmetries. It may readily be seen from the coefficients of equation (17) that
all such coefficients will have the symmetry properties required for the elastic constants
of any order. Another way of arriving at these symmetries is given in M84a, section 6
(see equation (6.4)).

If we expand the coefficients of equation (19) about the reference configuration x#,
just as we did for the series of equation (11), we obtain a double series in % and the
particle displacements ¢¥. In table 3, we list some of the corresponding perturbation
terms, second order in the strain, while in table 2 we recognise the identity of the
coefficients which are first order in the strain tensor u or 5. All these results are valid
for the case of non-zero stress at the zero-strain reference state.

Note that the present treatment can be given completely in terms of xp only, if desired.
The discussion has been given in terms of u as well, in order to compare the treatment
with that of BH. 7

The close relationship of the coefficients of the linear terms in table 2 to the well
known rotational invariance conditions on the lattice potential coefficients should also
be noted (see e.g. Wallace 1972).
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6. The kinetic perturbation terms

The kinetic contribution to the perturbation w(x) of equation (7) is given by (see
equation (16))

(1/2m, ) [1/(E; + 29) — Esop pirh (20)

where we use the generalized summation convention,
On converting to lattice notation and normal modes (see table 1 for notation), the
kinetic contribution may be written

/m = @)+ T 2 (S eotibeslhn)| Varon,

X A(g + g1)B(A)B(4,) (21)

where we have used the well known expression

112

pol0)= /) () S wfe ety ér=0s, (22)
for the momentum components in terms of operators of the type B,, given in equation
(2.3.56b) of Maradudin et al (1971).

It is of interest to compare the vertex function here with that of the potential energy
perturbation term of item 3, table 4. It may be seen that the harmonic contribution to
this potential term has a vertex function which differs from that above only in having the
factor w}?/w;'” instead of Vw,w;,. However, the traces of these two terms are
identical.

We see that the kinetic perturbation contributes to all orders of strain, with the same
vertex function for each order. It always has two phonon lines, no more and no less.

As an example, we shall consider the Kinetic contribution to the perturbation terms
which are linear in 1, as this is important in considering the internal strain.

We shall limit ourselves to the kinetic terms for which the two modes A and A, have
the same branch. That is, we shall take A| = —4 =4, in equation (21).

The vertex function of equation {21) is the same for all orders of %, and, if we write
the complete general term, we have

10, (=2)7 1 (0°)apfap(F)B1 B (23)
where

Fas (M) = 2 eq(k|A)e (x]2). (24)

If we combine this linear strain term with the harmonic term in item 3, table 4, for
this case of A, = A, we obtain for the combination,

Nap (i, Y op(M)larai + ajal] (25)
The cubic anharmonic term of item 3, table 4, may be written
Moy Vien-ud {{0aas + afai] + [ma; + ajai]} (26)

The first term in the braces commutes with the harmonic Hamiltonian, which we
shall take as our zero-order Hamiltonian, and so it does not contribute to the internal
strain. It is of interest that it contributes a temperature dependent term

IV (o (—IARY (2T, + 1) ~ Vg (. (kT hw,) 27
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t0 (0 N)O,g, where @, is the Cauchy stress tensor at the zero-strain reference state
and 7, is the mean mode occupation number. The last expression in this equation is the
high temperature value.

The other terms of item 3 plus the kinetic contribution are

NapPl(Fag(R) @) + @, fog(M)] (@285 + a,a;] (28)
where _
Faﬁ (}L) = q)afﬁ(_“l}") (29)

(see item 2, table 5).
We shall apply this result in section 9, when we consider the elastic constants of a—
£ quartz. In the BH theory, the term in f,5 does not appear.

7. The elastic constants

Excellent accounts of diagram and Green’s function techniques for evaluating the elastic
constants have been given by Cowley (1963} and Barron and Klein (1974). We see that
the potential energy contributions to the elastic constants are given by simple diagrams
containing vertices having one strain line corresponding to, say, t,g or two strain lines
corresponding to i, g, U 4.5, . a8 shown in table 4,

In table 4, we compare the corresponding potential energy perturbation terms,
obtained from a BH type of treatment and from the present treatment. The notation
used is based on the BH notation, but owes something also to that of Maradudin et af
(1971), and of Barron and Klein (1974}, See tables 1 and 5, for the necessary definitions.
In table 5, sufficient typical quantities are defined that the general notation may be
readily inferred.

‘We see that a harmonic contribution occurs in each vertex function of the 3rd and
7th items of table 4 (see item 6 of table 5). Both these vertices make up the quasi-
harmonic contributions to the elastic constants, for a crystal where every particle isata
centre of symmetry (see Barron and Klein 1974, p 424, figure 9). Thus for a harmonic
model there will still apparently be contributions to the quasi-harmonic expiessions for
the elastic constants. Such a contribution also occurs in item 6, although it is a different
transformation of the harmonic potential coefficients.

Concerning the index symmetries of these terms, since we may prove rigorously that
the terms of the present treatment have the required symmetries, we may say, for
example, that the BH term of item 7, say, may only have the required symmeiries if the
expression

2V (wgn ey (T1AA1) + Vg iy (A41) (30)

found in item 7 table 4 of the present treatment, has the required symmetries inde-
pendently of the BH quantity of item 7. There appears to be no proof of this or similar
propositions.

8. The Born-Huang treatment

The BH treatment of the thermodynamics of a deformed crystal is given in chapter VI,
beginninginsection 39, Inthe first paragraph of section 40itisstated that the Hamiltonian
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Table 4, Comparison of potential energy perturbation terms, Strain lines have arrows,
phononlines do not. Note that the entries must be multiplied by N, to obtain the perturbation

term for the crystal,
Vertex functions
Factors and vertices Born and Huang % N, Present theory X N,
ﬁaﬁ ;nr e 7 . Flrst order in strain
1
a'B ¢ » V[arﬁ}("') (xﬁ .a_(p...)
axt/,
2 A(A)Alg)
o e~ Vi) (—[d) Vies) (1A
3 A(AARAY)
) 1 1
Alg + ) 55 Viens (=1A11) 57 Voo (=1A41) + 2V (311))
1
= Etvlﬂﬁ](—llll)

o -
aff + hwi?w; P E, e, (k]M)eg (kA )]
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of the deformed crystal is to be expressed in terms of internal coordinates and of
macroscopic parameters describing the state of strain. The finite strain tensor elements
u,gare taken as the macroscopic parameters, in the sense that they describe an elastically
strained lattice. The internal coordinates are taken to be the displacements

()

in our notation v¥, of the nuclei from the strained lattice, described in our notation by
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Table 5. Definitions. In definitions 2b—6 the summation convention is to be used for any
repeated pair of indices whatever, except for the pair labelled 0.

Expression Definition
1 n
T{ix, A) (hf 2, Nam ) el 50 (k|1
2a
Viewotann (== A A Pragpytagn (- == Ay - AN (Bf200, )
in the BH notation
2b
Vi (Ady) 0 L
(afy ¢¢?| < x ) Tﬁ(OK,A)TH(llK“l[)
L
= Hhw}lo; e, (x|A)es(xld )Alg + @)
3
Vian(Aiid ) 0 & b
a8y (IJ,,,.H,Z ( ) Tﬂ(UK,A)Th(!]Kl,}L])T‘,z([zxz,itg)
K Ky K2
4 A 0
V(nﬁ)("ll‘:'l) Doyiva ( )xs ( ) Ty|([|xl’l)T72(12K2?A|)
K Ky K; I3
3 04 b 0 1
Viegniesn (- —|4) Dirjayr ( ) xp ( )xﬁz ( ) Ty (k2. 4)
K Ky K3 K Ky
6 A0
Viagssiaspnt (A2() Doy (K . )Tﬂl(ﬂ-’f,l)Tﬁz(hKlJ-a)
1

the configuration Dx¥. This lattice is obtained by deforming the zero-strain lattice x*
homogeneously and without internal strain.

We shall show that this basic description is not adequate to describe a deformed
crystal. In fact, we shall show that this description fails a simple test required by the
rotational invariance property of the Hamiltonian of the system.

To do this we must first obtain from the BH description an expression for the elastic
potential energy, as follows. By elastic potential energy we mean the change in the
potential energy function ®(x* + v*) due to the application of the above deformation
to the lattice x*.

Consider the quantity &% of their equation (40.4). This may be seen to be given
by

5%t = D(DX* + v#) — O(DF*) = (¥4 + ugpih + i) = PUE + ophh). (31)

That is, as stated explicitly in BH section 39 in the paragraph immediately before
equation (39.19), 8@ is the potential energy of the configuration Dx* + o relative to
that of the homogeneously deformed lattice (without internal strain). On this basis we
may accept equation (31) as a correct description of the BH expression &%, However,
it may be felt desirable to reconcile this description of equation (31) with the explicit
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expression for 8% given in BH equation (40.4). This may be done readily be expanding
both terms on the right hand side in powers of the two types of displacements,
u,px% and v4, about the zero-strain reference configuration x*. Then, in order to com-
pare the result with the expression in BH equation (40.4), it is necessary to carry out the
well known transformation to normal mode amplitudes Q.

We should note further that 0% contains terms independent of the u,; which add
up to

Dl + p?) — D). (32)

This term is clearty not part of the elastic potential energy which should vanish as the
strain tensor vanishes. In fact, it is the limit of ¢ when the strain tensor is zero.
Taking this into account, we may write equation (31) as

SP%! = [P(Dx* + v#) — S(x* + v¥)] + [P(x* + 0*) — ©(x*)]
= [®(D5*) - D(x*)]. (33)
On rearrangement, this equation may be written as

Pt + [D(Dx*) — D(x*)] — [P(x* + v#) — P(x¥*)] = D(DIF + p*) — D(x* + v4))

(34)
where the total elastic potential energy of the BH treatment is given by the left hand
side of thisequation. That is, to obtain thisquantity, we have added to §&“f the potential
energy gained by deforming the lattice (from x* to Dx*), without internal strain, and this
is the second term of the left hand side of the above equation. This is the term to which
BH approximated by using the well known square brackets expression. We must further
subtract from 899 its limiting value when the strain tensor is zero. This is the third term
on the left hand side.

Thus, this expression for the elastic energy vanishes with u. However—and this
provides the test—— it should also vanish if D is a proper orthogonal matrix O representing
an arbitrary rigid rotation. Thus we must have, from the right hand side of equation
(34),

DO + p*) = B(E* + p*) (35)
or
G + 07 pF) = D + pH), (36)

It is well known that these equations cannot be peneraly true,

We must therefore conclude that the BH basic description of a deformed crystal is
not arotationally invariant description and so is not correct. We note that. in this respect,
the present treatment is consistently rotationally invariant.

The differences in the strain energy perturbation terms of the two treatments are
dueto

(1) the presence of the kinetic term of section 4. in the present treatment; and to
(ii) the present treatment having extra potential energy perturbation terms equal to

B(Dx4) — (D + p#) = D(r* + urt) — dx* + uk),

The BH expansion of the potential energy perturbation terms in powers of u may thus
be obtained by replacing the factor (x§:), in the right hand side of equation (13) by the
factor (x4i),. Thus each coefficient of the BH expansion is the leading term only of the
corresponding coefficient of the present treatment (see section 4 and table 2},
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9. The elastic constants of S-quartz

In discussing the elastic constants of S-quartz near the a—f quartz transition, Axe and
Shirane (1970), addressed the problem of explaining the behaviour of these quantities
in the face of the fact that the soft mode appeared to be a B, optic mode. The problem
arose from the fact that this mode does not transform under the crystal symmetry group
like any part of a second rank tensor, which is a requirement for it to contribute to the
internal strain part of the elastic constants (see Miller and Axe 1967).

Axe and Shirane introduced an anharmonic contribution to the internal strain part
of the elastic constants, and were able 1o give a satisfactory explanation of their behaviour
near the transition temperature, This contribution was based on the BH treatment of a
deformed crystal and was of the form

Crzbaﬁ = (C/chc) [Fab (A')Fa,ﬂ (I)] (kT/(Ui) (37)

where C is a constant. The tensor is defined as in equation (29). It is readily seen that
this tensor is based on the diagram of item 3 of table 4, where the correct factor may be
found.

From equation (28), we see that in equation (37) the tensors should be replaced by,
for example,

Fip(R) + wifap(A). (38)
On substituting these corrected tensors in equation (37), we must write
Cavap = —(CINS ) [FasFap/@w} + (FusFup + Fupfus )0} + FanFug) &T (39)

where, for example, F,g = F,4(A)—abbreviations which should not create confusion.
Axe and Shirane integrated their term over modes on the same branch as the B,
optic soft mode by using an approximate empirical expression for the frequency as a
function of g for g directed close to the c-axis. Their result was a (1/@*(0j)) ~ (T — T,)™!
divergence in the elastic constants—a result which gave good agreement with exper-
iment. If we follow the same integration method for the expression in equation (39) then
from the middle term of this equation we find a logarithmic divergence of the form

In[(@*(0f) + aqiac) /(0]

where g, is a suitably chosen maximum value for Vig? + gy in the empirically chosen
expression for @*{gj) as a function of g near the c-axis, and the parameter a occurs in
this latter expression.

This new divergence is, of course, not as strong as the Axe and Shirane divergence.
However, it will be of some importance in the behaviour of the elastic constants as the
transition temperature is approached. The extra terms of equation {39) may also be of
interest for some materials where the tensor F or some of its elements are zero, We
should note, however, that, for a rotationally invariant vibrational model, the cubic
anharmonic term may not vanish except for the simple rotationally invariant harmonic
model, discussed in M83b. Thus, if the tensor F is small or zero for a material, this
indicates that its behaviour may be approximated by such a harmonic model.
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