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The quantum theory of elastic constants 

A G McLellan 
Department of Physics. University of Canterbury. Christchurch. New Zealand 

Received 5 November 1990 

Abstract. A recent rigorous and rotationally invariant treatment of the theory of a homo- 
geneously deformed material is discussed. It is shown that it leads to different strain per- 
turbation terms in the Hamiltonian from those arrived at in the standard treatment of Born 
and Huang. These differences are discussed. It is shown also that the Hamiltonian of the 
deformed system may be directly expressed in terms of the Lagrangian finite strain tensor, 
with the result, for example, that the correct symmetries for the thermodynamic quantities 
are apparent at all times. The advantages and simplicity of the finite strain treatment are 
discussed. It is also shown that the Born-Huang treatment fails a simple test of rotational 
invariance and so cannot be correct. This accounts for the difference in the two treatments. 
As an example, it is shown how the soft mode of /3 quartz. following the method of Axe and 
Shirane, contributes a logarithmic divergence to the elastic constants in addition to the 
(T - TC)-' divergence discussed by these authors It is weaker than this latter divergence, 
but it may be of interest further away from the transition. 

1. Introduction 

Recently, a study (McLellan 1984a, b, 1985a, b and 1988-referred to here as MWa, 
M84b, etc, respectively) was madeof the quantum theory of a homogeneously deformed 
system. A rigorous treatment was given, an important aspect ofwhich is the recognition 
that the energy eigenfunctions of the deformed system satisfy boundary conditions 
different to those satisfied by the eigenfunctions of the undeformed system. Thus, 
without a particular transformation of coordinates, the usual perturbation methods 
cannot apply since it is basic to such methods that the perturbed eigenfunctions can be 
expressed as, usually orthogonal, transformations of the unperturbed eigenfunctions 
which are regarded as a complete set. This may not be done if they satisfy different 
boundary conditions. 

Emphasis is also placed on the symmetry properties of the indices of the elastic 
constants and the rotational invariance properties of the potential energy function. 
It was shown that, in this treatment, the correct symmetries are obtained from the 
beginning. 

In this paper we show that this treatment does not agree with the standard treatment 
of Born and Huang (1954), (here referred to as BH) even for the case of a harmonic 
model. It similarlydisagreeswithothertreatments,e.g. that OfBarronandKlein (1974), 
which are variations on the BH treatment. The reasons for this disagreement will be 
discussed in section 8 where it will be shown that the BH description of a deformed 
crystal is not rotationally invariant and that this accounts for the different results in the 
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two treatments. This section, apart from some definitions given in table 1, may be read 
independently of other parts of this paper. 

After a brief discussion of the present treatment, the differences between the for- 
mulae for the elastic constants for the two theories will be discussed. It will be shown 
that while the correct index symmetries of the constants are shown to hold in the present 
theoryasasimpleconsequence ofthe rotational invariance condition on the Hamiltonian 
of the system, such symmetries for the elastic constants on the BH theory would be 
inconsistent with the well known invariance conditions applied to the lattice potential 
coefficients (see e.g. Wallace 1972). 

The differences in the various contributions to the elastic constants are significant 
andconsist of extra termsin the vertexfunctionsof the diagram perturbation technique. 
Forexample. in thediscussionofthe @+quartz transition,a termin theelasticconstants 
was discussed by Axe and Shirane (1970) as showing the effect of the soft mode. This 
term gave a ( T  - T J ’  singularity in the elastic constants. One of the two corrections to 
this term as required in the present treatment would. on following the same mode of 
analysis as that of these authors, add a logarithmically divergent contribution to this 
term. Of course. at the transition. the stronger divergence would control effects there. 
However, this diverging contribution may be of importance in precursor effects; they 
may also be of importance if the coefficient in the most strongly divergent term became 
zero for some materials or some conditions. In the light of the current interest in this 
transition because of the recent elegant experimental and theoretical work leading to, 
the discoveryof an incommensurate intermediate phase, it is important that the correct 
treatment of thermodynamic quantities such as elastic constants and piezoelectric coef- 
ficients be given. Quantities, such as these that are related to strain deformations will 
require corrections. 

The elastic constants referred to throughout this paper will be the isothermal con- 
stantsof finite strain theory, namely those defined by 

cobon = (a’f/Jqoba‘lafl)O (1) 

where the derivatives are evaluated at the zero-strain reference state, and f is the 
Helmholtz free energy per unit reference volume (see e.g. M84a. table 1). In passing, 
the use of infinitestimalstrain theory has few advantages which areoffset by the fact that 
the Cauchy stress tensor cannot be expressed as a derivative of a free energy euen in the 
infinitesimallimif. One result is that, although they are equal to those of equation (1) 
for a zero-stress state only, the elastic constants of infinitesimal theory are symmetric 
only when evaluated at a state that is at hydrostatic pressure, not for non-hydrostatic 
reference states (see e.g. M80, pp 15&7). See e.g. M84a, table 1, for relations between 
the elastic constants calculated using U or q. 

In applying this treatment to a crystal system, we shall use the well known Ham- 
iltonian formulation appropriate to the adiabatic approximation. However, this treat- 
ment is completely general, and could be applied to the case of the full Hamiltonian of 
nuclei and electrons. Nelson (1988) (see also Pleiner and Brand 1988) has recently 
studied the crystal system as a non-adiabatic case, and he has arrived at the conclusion 
that. due to the coupling of optical phonons to acoustic phonons. there may be a small 
dynamic antisymmetric part of the stress tensor. This would have the consequence that 
theelasticconstantswould have 45 independent elements in the mostgeneral anisotropic 
case-instead of the usually accepted number of 21. It should be possible to formulate 
this possibility using the treatment presented here. 
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Symbol Definition 

Number of particles (atoms or ions) 
Number of cells in lattice 
Volume of a cell 
Helmholtz free energy per unit reference volume 
Position vector of particle p, p = 1, . . . , N 
Shorthand for all position vectorsd 
Shorthand for all position vectorsP in deformed container 
Unit 3 x 3 matrix 
Homogeneousdeformation matrix = a X / a x  
Determinant of D 
D - E< finite strain tensor 
Lagrangian finite strain tensor, defined by dS’ - ds’ = 27.ed.r$xR 
where dSz = \dyI’, ds‘= l&12 
Reference position vector 
Particle displacement from reference position 

x (1) reference position vector 

Mass o i p a r r i e  of sub-lattice Y 
qj, -qj = ( - q ) j ,  wave vector and branch 
ayA + a l ,  creation and annihilation operators 
A(1) ( f i /%)  I n  
ai - a i A  
1 when q is a reciprocal lattice point. 0 otherwise 
Normalised polarization vectocs, see Maradudin e l ,  51) (1971), equation (2, 

In the next section we shall discuss the present treatment in order to introduce the 

For convenience a list of definitions of symbols is given in table 1. 
corrections. 

2. Theory 

The present theory derives rigorously in quantum terms all the contributions to the 
elastic constants, that is, the kinetic and the potential terms as well as the Buctuation 
terms. In the original treatment, MMa, the system was considered deformed homo- 
geneously by suitably deforming the container as is done in experimental work. The 
container was described in terms of a containing potential, but here we shall somewhat 
more briefly discuss this effect by saying that the container is deformed, thus giving rise 
to different boundary conditions when different deformations are applied. Reference 
to the above paper will show that this is satisfactory 
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The Schrodinger equation for the system in the reference zero-strain state may be 
written as 

H ( x ) v . ( x )  = E.yr,(x) (2) 

where xis shorthand for all the position vectors 2, p = 1, . . . , N of the N particles of 
the system. 

The Schrodinger equation for the system when in the deformed container is of the 
same form 

f " X )  = (4 + 6En)VJW)  (3) 
where, for convenience in this case, we use upper case X for the Cartesian position 
vectors, which span the region enclosed by the deformed container. 

The important difference between these two equations is not in their form. but in 
the fact that the boundary conditions in the two cases are different. This means that we 
cannot use the ordinary techniques of perturbation theory and regard equation (3) as a 
perturbedform of equation (2),sinceitisbasictosuchmethods that it  can beassumed that 
the perturbedeigenfunctions may be taken to be linear combinations of the unperturbed 
eigenfunctions. and, in fact, when suitably normalized, that they can be taken asorthog- 
onal transformations of them. This certainly cannot be the case when each set of 
eigenfunctions satisfies different boundary conditions. 

This difficulty can be readily overcome by using a non-orthogonal transformation at 
first, as follows. 

In equation (3). we make the mathematical transformation 

X = Dx (4) 
where D is the homogeneous deformation matrix produced by the deformation of 
the container. that is the container shape is changed so that the system is deformed 
homogeneously and each point x of the system in the reference state is deformed to the 
point X such that equation (4) holds true where the matrix D has the same value 
everywhere in the system. 

When the mathematical transformation is performed, the Schrodinger equation of 
the deformed state becomes 

H(Dx)q;(Dx) = (E ,  + GE.)VL(Dx). ( 5 )  

We now observe that the eigenfunctions, y;(Dx), regarded as explicit functions of 
the vectors denoted by x, obey exactly the same boundary conditions as do the unper- 
turbed eigenfunctions vn(x )  (as we may now describe them). Thus when suitably nor- 
malized, using the determinant J of the matrix D as the Jacobian in the integrals, the 
eigenfunctions VJ;(x) may now be expressed as an orthogonal transformation of the 
unperturbed eigenfunctions of the reference zero-strain state. 

It is readily seen that H(Dx)  is Hermitian and well behaved with respect to functions 
which satisfy the boundary conditions of the reference zero-strain state, when regarded 
as an operator function of the variable x. 

Thus, for example, we may write equation ( 5 )  in a perturbed form as 

[W) + w ( x ) l ~ X W  = (E.  + W ) V X D x )  

W ( X )  = H(Dx) - H(x) .  

(6) 

(7) 

where 
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Note that if D represents a rotation instead of a deformation this perturbation vanishes. 
This perturbation may first be expanded as a series in either the finite strain tensor 

U, or, as we shall show, as a series in the Lagrangian finite strain tensor q (see table 1, 
for definitions). The coefficients of these series, which are functions of the x', may then 
be expanded as series in the displacements vfl from the reference configuration i p ,  to 
obtain either a double series in the elements of U and the U@, 01' in those of q and the vfl. 

These expansions and then the kinetic contribution will be discussed in sections 4 ,5  
and 6 ,  respectively. 

However, first we shall show how to treat, in a simple way, the sum over states Z for 
the deformed strain state, in a manner independent of the treatment of the Schrodinger 
equation given in this section. 

3. The sum over states 

We shall briefly show from first principles how the correct thermodynamic approach 
may be given without directly referring to the treatment of the Schrodinger equation 
given in the previous section. For diagram and other techniques, we start with the sum 
over states for the deformed state 

where In') is the ket notation for the eigenfunction q ; . ( X ) ;  this eigenfunction is con- 
sidered normalized to unity in the space of the variables X .  

If we compare this expression with that for the reference container state, we see that 
we cannot compare them in the usual manner by taking the trace of an operator with 
respect to the perturbed eigenfunctions as being equal to its trace with respect to the 
unperturbed eigenfunctions. This is so since we cannot transform from one to the other 
by an orthogonal transformation. 

Therefore, we must perform the mathematical transformation X = Dx as in the 
previous section to obtain the following expression for the sum over states 2 for the 
deformed state, 

I q;?(x)e-~"(*)q;.(X) dX = JN 1 (Dx)e -B"(Dr)q;,(Dx) dr (9) 
n' n' 

where J is the determinant of D.  If we normalize the functions f/~V;(D.rj to unity with 
respect to the variablesx, we then see that the factorJNin thisequation is absorbed. The 
right hand side is now the trace of an operator with respect to a set of orthonormal 
functions which may be transformed by anorthogonal transformation to the unperturbed 
eigenfunctions of the reference container state, since they obey the same boundary 
conditions. We may write the perturbed sum over states as 

where the basis functions are the unperturbed eigenfunctions. Thus conventional per- 
turbation techniques may be applied. 

It is of interest to see that, in the corresponding classical statistical mechanical 
treatment of Z, afactorJNis obtained in asimilar way. However, it is not absorbed into 
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the integral as here. In fact, this factor leads to the familiar equation of state pV = NkT 
in the limit of an ideal classical gas. 

We may note that the treatment is very general-for example, it does not need a 
reference configuration or lattice. It has been applied successfully, for example. see 
M84a, to the case of a perfect quantum gas. 

4. The expansion in terms of U 

If we take D = E, i U, where E, is the unit 3 x 3 matrix, we can expand w(x) as a series 
in the finite strain tensor U. 

The potential part of the perturbation term is 

where the partial derivatives are evaluated at the (arbitrary) configuration x", p = 1, 
. , ., N .  where N is the number of particles. In this equation, for brevity, we use a 
generalized summation convention for repeated particle indicesp,, p2, . . ., p,, . . . ,as 
well as for the Cartesian components. 

The perturbation term involving the potential energy terms only has been expanded 
as in equation (11) in powers of the tensor U. For a crystal lattice. we have a reference 
configuration C,. The coefficient of each term of the expansion of equation (1 1) may be 
expanded in powers of the displacements, u p ,  of the particles from their reference 
configuration positions, 2, to obtain a double series in powers of the strain tensor U and 
of the particle displacements. 

Since 

(12) " P  = x P  - 3 

we obtain, on expanding each term of equation (ll), 

where {}osignifiesevaluation at the referenceconfiguration,%, andthe bracket symbols 
(),, are defined by, for example, 

Vi$,). = W=Ifit!J,. (14) 

Again, we are using the generalized summation convention for all repeated particle 
indices and those of Cartesian components. 

In table 2 are listed some terms, first order and second order in the strain tensor, of 
the perturbation. It may be noted that thecorresponding coefficientsofthe contributions 
according to BH, Cowley (1963) and Barron and Klein (1972) are the leading terms in 
those of the second columns of these tables. As indicated in table 2 ,  the fust-order 
coefficients listed will be shown, in section 5, to be the same as those for the first-order 
expansion in powers of I). 
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Table 2. Some perturbation terms, first order in the strain tensors U or q. for the whole 
crystal, using untransformed lattice potential coefficients; also some quadratic in the tensor 
U. Strain lines have arrows. phonon lines do not. The summation convention is to be used 
for all pain of repeated indices of whatever type, O I , , ~ ,  y ,  . . ., p,  Y . . , I n  lattice notation, 
each index of the types,  Y corresponds to a pair of indices of the type (IK), the cell origin 
and sublattice indices respectively. 

Factors and vertices Perturbation functions 

Second order in strain 

In table 2, for brevity, we are using indices, such as !A, Y etc, instead of the usual 
lattice notation 

We define 

the usual lattice. potential coefficients, which are derivatives evaluated at the reference 
configuration (see table 1) 
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With regard to index symmetries, we see that the coefficients of equation (13) are 
symmetric with respect to interchanges of the type ( o c , ~ ; )  c) (qp,). With regard to 
interchanges of the type a, B;, we see that the terms of this equation that are linear in 
U do have this symmetry as a consequence of the rotational invariance of Q. But for 
termsquadraticand higherinu wesee, by comparison withequation (19). that ingeneral 
we do not have this type of symmetry. As an important exception, we see that, for a 
zero-stressstate only, the coefficient of item4, table 2 does have thissymmetry (ditem 
4, table 3, which certainly does have this symmetry for any stress state). 

In the next section we shall show how to express the perturbed Hamiltonian H(Dx) 
explicitly in terms of the well known Lagrangian finite strain tensor q (see e.g. M84a, 
table 1). 

5. The use of the Lagrangian finite strain tensor 

It has been shown (see M88) that a rotationally invariant and parity conserving potential 
energy function may be taken as a function Q(Q”), where 9” = x” . x” is a set of scalar 
products (often, but not necessarily, all such possible products). If we regard Q as an 
explicit function of these scalar products, it may readily he shown (see also M84a, 
equation (4.9)) that we may write 

H(Dx) = ( I / Z ~ ? I ~ ) [ I / ( E ~  + 2q)].pp$pg + Q ( x ~  . (E3 + ZT/ )  . x u )  (16) 
using the generalizedsummationconvention. The perturbation ofequation (7) may now 
be expanded in powers of q and w,ill contain kinetic and potential terms. 

At present we shall consider only the potential energy terms arising from the expan- 
sion of Q(S“” + 2qn&xyI). The derivatives of Q with respect to the 9” may be related 
to the derivatives of Q with respect to the variables x”. The relationships for the 
derivatives of order 1 to 3 are effectively listed in M88, equations (’2.%10). 

Now, if we expand the above function we obtain 

where 
Q P I V I . . . P ~ V ~  = (an@/aSvivi , , , apd‘.)  (18) 

are, importantly. scalarfunctions. Again we use the generalizedsummation convention. 
Wenote that the indexsymmetriesof thecoefficientsof the termsinequation (17) agree 
with those required of the elastic constants. 

Now using the relationships of M88 equations (2.8-10). but for an arbitrary con- 
figuration 9, not, as in  these equations, for the reference configuration .$, we readily 
obtain 

using the generalized summation convention. Since q is zero if D represents a rotation, 
rotational invariance is trivially evident when q is used as the strain variable. 

If we compare thisexpansion with that of equation (11) in powersof the strain tensor 
U, we see that the first-order coefficients are identical and the second-order coefficients 
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TahleJ. Some perturbation terms, second order inthestrain tensor 9 ,  for thewholecrystal. 
using untransformed lattice potential coefficients. Strain lines have arrows, phonon lines do 
not. The summation convention is to he used for all pairs of repeated indices of whatever 
type, a, 8. y.  . . , , p. Y . . , In  lattice notation, each index of the type p. Y corresponds to a 
pair of indices of the type ( / E ) ,  the cell origin and sublattice indices respectively. 

Factors and vertices Perturbation functions 
v*,P,qQ& Second order in strain 

are not. In fact, the additional term in the second-order coefficient of equation (19) is 
proportional to the Cauchy stress tensor at the reference zero-strain state. Thus, these 
coefficients are related in the same way as the elastic constant tensor c and the wave 
propagation tensor A (=82flaudu, see M84a, table 1). 

As we shall be discussing the second-order elastic constants only, the first- and 
second-order terms are all that we require at present. We have noted that they have the 
required symmetries. It may readily be seen from the coefficients of equation (17) that 
all such coefficients will have the symmetry properties required for the elastic constants 
of any order. Another way of arriving at these symmetries is given in M84a, section 6 
(see equation (6.4)). ' 

If we expand the coefficients of equation (19) about the reference configuration 9, 
just as we did for the series of equation (ll), we obtain a double series in r) and the 
particle displacements U#. In table 3, we list some of the corresponding perturbation 
terms, second order in the strain, while in table 2 we recognise the identity of the 
coefficients which are first order in the strain tensor U or r). All these results are valid 
for the case of non-zero stress at the zero-strain reference state. 

Note that thepresenttreatmentcanbegivencompletelyin termsof qonly,ifdesired. 
The discussion has been given in terms of U as well, in order to compare the treatment 
with that of BH. 

The close relationship of the coefficients of the linear terms in table 2 to the well 
known rotational invariance conditions on the lattice potential coefficients should also 
be noted (see e.g. Wallace 1972). 
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6. The kinetic perturbation terms 

The kinetic contribution to  the perturbation w(x) of equation (7) is given by (see 
equation (16)) 

( l / z m p ) [ l / ( h  + 2 ~ )  - E ~ I ~ B P W  (20) 
where we use the generalized summation convention. 

kinetic contribution may be written 
On converting to lattice notation and normal modes (see table 1 for notation), the 

X A(q + q i ) W ) W i )  
where we have used the well known expression 

for the momentum components in terms of operators of the type E,, given in equation 
(2.3.56b) of Maradudin et a1 (1971). 

It is of interest to compare the vertex function here with that of the potential energy 
perturbation term of item 3, table 4. It may be seen that the harmonic contribution to 
this potential term has a vertex function which differs from that above only in having the 
factor W:/*/W,’” instead of -. Howeveri~the traces of these two terms are 
identical. 

Wesee that the kinetic perturbationcontributes to allordersofstrain, with thesame 
vertex function for each order. It always has two phonon lines, no more and no less. 

As an example, we shall consider the kineticcontribution to the perturbation terms 
which are linear in 11. as this is important in considering the internal strain. 

We shall limit ourselves to the kinetic terms for which the two modesA and A, have 
the same branch. That is, we shall take A ,  = -k =i, in equation (21). 

The vertex function of equation (21) is the same for all orders of q ,  and, if we write 
the complete general term, we have 

Bhwi(-2)P- ’ (~P) , f , s (W,Ei  (23) 

f ~ 8 ( ~ )  = ee(KIA)eg (24) 

vcB8(fiw,)f,pr(wAai + a X l .  (25) 

where 

LI 

If we combine this linear strain term with the harmonic term in item 3, table 4, for 
this case of A ,  = ,f, we obtain for the combination, 

The cubic anharmonic term of item 3. table 4. may be written 

{[aha: + a h  + [aAai + a:a:~}. (26) 
The first term in the braces commutes with the harmonic Hamiltonian, which we 

shaU take as our zero-order Hamiltonian, and so it does not contribute to the internal 
strain. It is of interest that it contributes a temperature dependent term 

WLd--IA,f)(2& + 1) - V ( d .  ’ .)(kT/fiw,) (27) 
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to (IJ,N,)O,~, where Oe8 is the Cauchy stress tensor at the zero-strain reference state 
and iiL is the mean mode occupation number. The last expression in this equation is the 
high temperature value. 

The other termsof item 3 plus the kinetic contribution are 

where 
F.&) = @d- iG (29) 

(see item 2, table 5). 

p quartz. In the BH theory, the term infcp does not appear. 
We shall apply this result in section 9, when we consider the elastic constants of a- 

7. The elastic constants 

Excellent accounts of diagram and Green's function techniques for evaluating theelastic 
constants have been given by Cowley (1963) and Barron and Klein (1974). We see that 
the potential energy contributions to the elastic constants are given by simple diagrams 
containing vertices having one strain line corresponding to, say, ue8 or two strain lines 
correspondingto ~ , , ~ , u ~ ~ ~ , a s s h o w n i n  table4. 

In table 4, we compare the corresponding potential energy perturbation terms, 
obtained from a BH type of treatment and from the present treatment. The notation 
used is based on the BH notation, but owes something also to that of Maradudin et ai 
(1971),andofBarronandKlein (1974). See tables1 and5,for thenecessarydefinitions. 
In table 5, sufficient typical quantities are defined that the general notation may be 
readily inferred. 

We see that a harmonic contribution occurs in each vertex function of the 3rd and 
7th items of table 4 (see item 6 of table 5). Both these vertices make up the quasi- 
harmonic contributions to the elastic constants, for a crystal where every particle is at a 
centre of symmetry (see Barron and Klein 1974, p 424, figure 9). Thus for a harmonic 
model there will stili apparently be contributions to the quasi-harmonic expressions for 
the elastic constants. Such a contribution also occurs in item 6, although it is a different 
transformation of the harmonic potential coefficients. 

Concerning the index symmetries of these terms, since we may prove rigorously that 
the terms of the present treatment have the required symmetries, we may say, for 
example, that the BH term of item 7, say, may only have the required symmetries if the 
expression 

found in item 7 table 4 of the present treatment, has the required symmetries inde- 
pendently of the BH quantity of item 7. There appears to be no proof of this or similar 
propositions. 

8. The Born-Huang treatment 

The BH treatment of the thermodynamics of a deformed crystal is given in chapter VI, 
beginning in section39. In the first paragraph ofsection40it isstated that theHamiltonian 
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Table 4. Comparison of potential energy perturbation terms. Strain lines have arrows, 
phonon linesdo not. Note that theentries must bemultiplied byN*toobtain the perturbation 
term for the crystal. 

Vertex functions 

Present theory x N, 
. . .. .,. 

Factors and verticcs 

u,por 'l.s First order instrain 

1 

Born and Huang x N, 
. ... _ _  ...~,, ~.i: :r 

~~~ ~~ 

6 

of the deformed crystal is to be expressed in terms of internal coordinates and of 
macroscopic parameters describing the state of strain. The finite strain tensor elements 
unPare taken as the macroscopicparameters, in thesense that they describeanelastically 
strained lattice. The internal coordinates are taken to be the displacements 

in our notation up, of the nuclei from the strained lattice, described in our notation by 
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Table 5. Definitions. In definitions 2t-6 the summation convention is to be used for any 
repeated pair of indices whatever, except for the pair labelled 0. 

Expression Definition 

the configuration D.8. This lattice is obtained by deforming the zero-strain lattice .8 
homogeneously and without internal strain. 

We shall show that this basic description is not adequate to describe a deformed 
crystal. In fact, we shall show that this description fails a simple test required by the 
rotational invariance property of the Hamiltonian of the system. 

To do this we must first obtain from the BH description an expression for the elastic 
potential energy, as follows. By elastic potential energy we mean the change in the 
potential energy function @(ip + D * )  due to the application of the above deformation 
to the lattice Tp. 

Consider the quantity 6Qdef of their equation (40.4). This may be seen to be given 
by 
SO"'= @(Dip + U*) - @(Dip) = @(it + un& + U:) - @(it + u,giF). (31) 
That is, as stated explicitly in BH section 39 in the paragraph immediately before 
equation (39.19), 6Qde' is the potential energy of the configuration D.8 + u p  relative to 
that of the homogeneously deformed lattice (without internal strain). On this basis we 
may accept equation (31) as acorrect description of the BH expression 60de'. However, 
it may be felt desirable to reconcile this description of equation (31) with the explicit 
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expression for GQdefgiven inBHequation (40.4). This may be done readily beexpanding 
both terms on the right hand side in powers of the two types of displacements, 
U*&$ and U;, about the zero-strain reference configuration 9. Then, in order to com- 
pare the result with the expression in BH equation (40.4), it is necessary to carry out the 
well known transformation to normal mode amplitudes Q. 

which add We should note further that Wdef contains terms independent of the 
up to 

@(;e + U’) - @(P). 
This term is clearly not part of the elastic potential energy which should vanish as the 
strain tensor vanishes. In fact, it is the limit of 6Qdef when the strain tensor is zero. 

Taking this into account, we may write equation (31) as 
6@”‘ = [@(Die + U@) - @(;e + UN)] + [@(;’ + U P )  - @(x’”)] 

- [@(Die) - @(;&)I. (33) 
On rearrangement, this equation may be written as 

Gad‘‘ + [@(Die) - @ ( ; e ) ]  - [@(A% + U+) - @(;p))) = @(DB + 0’)  - @(;e + U’)] 
(34) 

where the total elastic potential energy of the BH treatment is given by the left hand 
sideofthisequation.Thatis. toobtainthisquantity,wehaveadded to6@Pd“thepotential 
energy gained by deforming the lattice (from;+ to D2), without internal strain, and this 
is the second term of the left hand side of the above equation. This is the term to which 
BH approximated by using the well known square bracketsexpression. We must further 
subtract froniG@de‘itslimitingvalue when thestrain tensor iszero. Thisis the third term 
on the left hand side. 

Thus, this expression for the elastic energy vanishes with U. However-and this 
provides the test-. itshouldalsovanishifDisaproperorthogonalmatrixOrepresenting 
an arbitrary rigid rotation. Thus we must have, from the right hand side of equation 
(34L 

4(0P’ + U”) = @(.P + U”) 

4qx.g + O-’u’) = Q(9 +UP). 

(35) 

(36) 
or 

It is well known that these equations cannot be generaly true. 
We must therefore conclude that the BH basic description of a deformed crystal is 

not arotationallyinvariant descriptionandsoisnotcorrect. Wenotethat. in thisrespect. 
the present treatment i s  consistently rotationally invariant. 

The differences in the strain energy perturbation terms of the two treatments are 
due to 

(i) the presence of the kinetic term of section 6. in the present treatment; and to 
(ii) the present treatment having extra potential energy perturbation terms equal to 

@(Dx’) - @ ( D i p  + U#) = @(xu + U X + )  - @(x’ + d e ) .  

The BH expansion of the potential energy perturbation terms in powers of U may thus 
be obtained by replacing the factor ( ~ 2 ) .  in the right hand side of equation (13) by the 
factor (41)”. Thus each coefficient of the BH expansion is the leading term only of the 
corresponding coefficient of the present treatment (see section 4 and table 2). 
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9. The elastic constants of p-quartz 

In discussing the elastic constants of &quartz near the a-p quartz transition, Axe and 
Shirane (1970), addressed the problem of explaining the behaviour of these quantities 
in the face of the fact that the soft mode appeared to be a B 1  optic mode. The problem 
arose from the fact that this mode does not transform under the crystal symmetry group 
like any part of a second rank tensor, which is a requirement for it to contribute to the 
internal strain part of the elastic constants (see Miller and Axe 1967). 

Axe and Shirane introduced an anharmonic contribution to the internal strain part 
of the elasticconstants, and were able to give a satisfactory explanation of their behaviour 
near the transition temperature. This contribution was based on the BH treatment of a 
deformed crystal and was of the form 

cibeB ( c / N c u c )  [ F o b ( d ) F ~ B ( K ) l  (kr /o t )  (37) 
where Cis  a constant. The tensor is defined as in equation (29). It is readily seen that 
this tensor is based on the diagram of item 3 of table 4, where the correct factor may be 
found. 

From equation (28), we see that in equation (37) the tensors should be replaced by, 
for example, 

F o b @ )  + o:f&(d). (38) 

(39) 

On substituting these corrected tensors in equation (37), we must write 

CLbcvB = - ( C / ~ & ' c ) [ F d ~ ~ , B / ~ ~  -+ (Feb?mB f k-oi5fob)/~~ + f n b ? d l k T  

where, for example, FeB = FaB(K)-abbreviations which should not create confusion. 
Axe and Shirane integrated their term over modes on the same branch as the B ,  

optic soft mode by using an approximate empirical expression for the frequency as a 
functionofqforqdirectedcloseto thec-axis.Theirresultwasa(l/w*(Oj)) - (T - TJ-' 
divergence in the elastic constants-a result which gave good agreement with exper- 
iment. If we follow the same integration method for the expression inequation (39) then 
from the middle term of this equation we find a logarithmic divergence of the form 

In[(w*(oj) + d d / w 2 ( O j ) l  
where qmx is a suitably chosen maximum value for w i n  the empirically chosen 
expression for w2(qj) as a function of q near the c-axis, and the parameter a occurs in 
this latter expression. 

This new divergence is, of course, not as strong as the Axe and Shirane divergence. 
However, it will be of some importance in the behaviour of the elastic constants as the 
transition temperature is approached. The extra terms of equation (39) may also be of 
interest for some materials where the tensor F or some of its elements are zero. We 
should note, however, that, for a rotationally invariant vibrational model, the cubic 
anharmonic term may not vanish except for the simple rotationally invariant harmonic 
model, discussed in M85b. Thus, if the tensor F is small or zero for a material, this 
indicates that its behaviour may be approximated by such a harmonic model. 
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